MCP Now
Dicom

Dicom

by ChristianHinge
GitHub

An MCP server to query and retrieve medical images and for parsing and reading dicom-encapsulated documents (pdf etc.).

optional
dicom
instance
study
series

dicom-mcp: A DICOM Model Context Protocol Server

This repo is part of a blog post: Agentic Healthcare LLMs

Overview

A Model Context Protocol server for DICOM (Digital Imaging and Communications in Medicine) interactions. This server provides tools to query and interact with DICOM servers, enabling Large Language Models to access and analyze medical imaging metadata.

dicom-mcp allows AI assistants to query patient information, studies, series, and instances from DICOM servers using standard DICOM networking protocols. It also supports extracting text from encapsulated PDF documents stored in DICOM format, making it possible to analyze clinical reports. It's built on pynetdicom and follows the Model Context Protocol specification.

Tools

  1. list_dicom_nodes

    • Lists all configured DICOM nodes and calling AE titles
    • Inputs: None
    • Returns: Current node, available nodes, current calling AE title, and available calling AE titles
  2. switch_dicom_node

    • Switches to a different configured DICOM node
    • Inputs:
      • node_name (string): Name of the node to switch to
    • Returns: Success message
  3. switch_calling_aet

    • Switches to a different configured calling AE title
    • Inputs:
      • aet_name (string): Name of the calling AE title to switch to
    • Returns: Success message
  4. verify_connection

    • Tests connectivity to the configured DICOM node using C-ECHO
    • Inputs: None
    • Returns: Success or failure message with details
  5. query_patients

    • Search for patients matching specified criteria
    • Inputs:
      • name_pattern (string, optional): Patient name pattern (can include wildcards)
      • patient_id (string, optional): Patient ID
      • birth_date (string, optional): Patient birth date (YYYYMMDD)
      • attribute_preset (string, optional): Preset level of detail (minimal, standard, extended)
      • additional_attributes (string[], optional): Additional DICOM attributes to include
      • exclude_attributes (string[], optional): DICOM attributes to exclude
    • Returns: Array of matching patient records
  6. query_studies

    • Search for studies matching specified criteria
    • Inputs:
      • patient_id (string, optional): Patient ID
      • study_date (string, optional): Study date or range (YYYYMMDD or YYYYMMDD-YYYYMMDD)
      • modality_in_study (string, optional): Modalities in study
      • study_description (string, optional): Study description (can include wildcards)
      • accession_number (string, optional): Accession number
      • study_instance_uid (string, optional): Study Instance UID
      • attribute_preset (string, optional): Preset level of detail
      • additional_attributes (string[], optional): Additional DICOM attributes to include
      • exclude_attributes (string[], optional): DICOM attributes to exclude
    • Returns: Array of matching study records
  7. query_series

    • Search for series within a study
    • Inputs:
      • study_instance_uid (string): Study Instance UID (required)
      • modality (string, optional): Modality (e.g., "CT", "MR")
      • series_number (string, optional): Series number
      • series_description (string, optional): Series description
      • series_instance_uid (string, optional): Series Instance UID
      • attribute_preset (string, optional): Preset level of detail
      • additional_attributes (string[], optional): Additional DICOM attributes to include
      • exclude_attributes (string[], optional): DICOM attributes to exclude
    • Returns: Array of matching series records
  8. query_instances

    • Search for instances within a series
    • Inputs:
      • series_instance_uid (string): Series Instance UID (required)
      • instance_number (string, optional): Instance number
      • sop_instance_uid (string, optional): SOP Instance UID
      • attribute_preset (string, optional): Preset level of detail
      • additional_attributes (string[], optional): Additional DICOM attributes to include
      • exclude_attributes (string[], optional): DICOM attributes to exclude
    • Returns: Array of matching instance records
  9. get_attribute_presets

    • Lists available attribute presets for queries
    • Inputs: None
    • Returns: Dictionary of available presets and their attributes by level
  10. retrieve_instance

    • Retrieves a specific DICOM instance and saves it to the local filesystem
    • Inputs:
      • study_instance_uid (string): Study Instance UID
      • series_instance_uid (string): Series Instance UID
      • sop_instance_uid (string): SOP Instance UID
      • output_directory (string, optional): Directory to save the retrieved instance to (default: "./retrieved_files")
    • Returns: Dictionary with information about the retrieval operation
  11. extract_pdf_text_from_dicom

    • Retrieves a DICOM instance containing an encapsulated PDF and extracts its text content
    • Inputs:
      • study_instance_uid (string): Study Instance UID
      • series_instance_uid (string): Series Instance UID
      • sop_instance_uid (string): SOP Instance UID
    • Returns: Dictionary with extracted text information and status

Installation

Prerequisites

  • Python 3.12 or higher
  • A DICOM server to connect to (e.g., Orthanc, dcm4chee, etc.)

Using pip

Install via pip:

1pip install dicom-mcp

Configuration

dicom-mcp requires a YAML configuration file that defines the DICOM nodes and calling AE titles. Create a configuration file with the following structure:

1# DICOM nodes configuration 2nodes: 3 orthanc: 4 host: "localhost" 5 port: 4242 6 ae_title: "ORTHANC" 7 description: "Local Orthanc DICOM server" 8 9 clinical: 10 host: "pacs.hospital.org" 11 port: 11112 12 ae_title: "CLIN_PACS" 13 description: "Clinical PACS server" 14 15# Local calling AE titles 16calling_aets: 17 default: 18 ae_title: "MCPSCU" 19 description: "Default calling AE title" 20 21 modality: 22 ae_title: "MODALITY" 23 description: "Simulating a modality" 24 25# Currently selected node 26current_node: "orthanc" 27 28# Currently selected calling AE title 29current_calling_aet: "default"

Usage

Command Line

Run the server using the script entry point:

1dicom-mcp /path/to/configuration.yaml

If using uv:

1uv run dicom-mcp /path/to/configuration.yaml

Configuration with Claude Desktop

Add this to your claude_desktop_config.json:

1"mcpServers": { 2 "dicom": { 3 "command": "uv", 4 "args": ["--directory", "/path/to/dicom-mcp", "run", "dicom-mcp", "/path/to/configuration.yaml"] 5 } 6}

Usage with Zed

Add to your Zed settings.json:

1"context_servers": [ 2 "dicom-mcp": { 3 "command": { 4 "path": "uv", 5 "args": ["--directory", "/path/to/dicom-mcp", "run", "dicom-mcp", "/path/to/configuration.yaml"] 6 } 7 } 8],

Example Queries

List available DICOM nodes

1list_dicom_nodes()

Switch to a different node

1switch_dicom_node(node_name="clinical")

Switch to a different calling AE title

1switch_calling_aet(aet_name="modality")

Verify connection

1verify_connection()

Search for patients

1# Search by name pattern (using wildcard) 2patients = query_patients(name_pattern="SMITH*") 3 4# Search by patient ID 5patients = query_patients(patient_id="12345678") 6 7# Get detailed information 8patients = query_patients(patient_id="12345678", attribute_preset="extended")

Search for studies

1# Find all studies for a patient 2studies = query_studies(patient_id="12345678") 3 4# Find studies within a date range 5studies = query_studies(study_date="20230101-20231231") 6 7# Find studies by modality 8studies = query_studies(modality_in_study="CT")

Search for series in a study

1# Find all series in a study 2series = query_series(study_instance_uid="1.2.840.10008.5.1.4.1.1.2.1.1") 3 4# Find series by modality and description 5series = query_series( 6 study_instance_uid="1.2.840.10008.5.1.4.1.1.2.1.1", 7 modality="CT", 8 series_description="CHEST*" 9)

Search for instances in a series

1# Find all instances in a series 2instances = query_instances(series_instance_uid="1.2.840.10008.5.1.4.1.1.2.1.2") 3 4# Find a specific instance by number 5instances = query_instances( 6 series_instance_uid="1.2.840.10008.5.1.4.1.1.2.1.2", 7 instance_number="1" 8)

Retrieve a DICOM instance

1# Retrieve a specific instance 2result = retrieve_instance( 3 study_instance_uid="1.2.840.10008.5.1.4.1.1.2.1.1", 4 series_instance_uid="1.2.840.10008.5.1.4.1.1.2.1.2", 5 sop_instance_uid="1.2.840.10008.5.1.4.1.1.2.1.3", 6 output_directory="./dicom_files" 7)

Extract text from a DICOM encapsulated PDF

1# Extract text from an encapsulated PDF 2result = extract_pdf_text_from_dicom( 3 study_instance_uid="1.2.840.10008.5.1.4.1.1.104.1.1", 4 series_instance_uid="1.2.840.10008.5.1.4.1.1.104.1.2", 5 sop_instance_uid="1.2.840.10008.5.1.4.1.1.104.1.3" 6)

Debugging

You can use the MCP inspector to debug the server:

1npx @modelcontextprotocol/inspector uv --directory /path/to/dicom-mcp run dicom-mcp /path/to/configuration.yaml

Development

Setup Development Environment

  1. Clone the repository:

    1git clone https://github.com/yourusername/dicom-mcp.git 2cd dicom-mcp
  2. Create a virtual environment:

    1python -m venv .venv 2source .venv/bin/activate # On Windows: .venv\Scripts\activate
  3. Install dependencies:

    1pip install -e .

Running Tests

The tests require a running Orthanc server. You can start one using Docker:

1cd tests 2docker-compose up -d

Then run the tests:

1pytest tests/test_dicom_mcp.py

To test PDF extraction functionality:

1pytest tests/test_dicom_pdf.py

Project Structure

  • src/dicom_mcp/: Main package
    • __init__.py: Package initialization
    • __main__.py: Entry point
    • server.py: MCP server implementation
    • dicom_client.py: DICOM client implementation
    • attributes.py: DICOM attribute presets
    • config.py: Configuration management with Pydantic

License

This project is licensed under the MIT License - see the LICENSE file for details.

Acknowledgments